Skip to contentSkip to author details

The Hand-MIDI Interface Project - Adafruit Feather 32u4 with Magnetometer

Written by Michael Earls
 electronics  music  diy  programming

A few months ago, I had an idea to create a new musical instrument that mounted on a glove. I used a cycling glove that I had from that time that I bought the Trek bike and rode it twice (long story).

I bought the following parts from Adafruit:

When the parts arrived, I started working on my "instrument". The idea was that I'd mount a Raspberry Pi to the back of my hand and wire up the 9-DOF sensor to one hand and the accelerometer to the other. I quickly learned that the Raspberry Pi is too big to mount on the back of a hand and ended up going a different direction. So, I ordered the following parts to try again:

I also ordered the following from ebay:

Once these new parts arrived, I got busy with my project. I first started by soldering some 4-conductor twisted pair phone wire to the I2C interface of the 9-DOF sensor. I made the wire about 8 inches long and then terminated it with one of the RJ-11 connectors.

9-DOF Sensor with RJ-11 connector 9-DOF Sensor with RJ-11 Connector

I then connected the Cat-3 keystone jack to the Feather's I2C port so that the wires would match how I connected them to the 9-DOF sensor. This would allow me to "plug-and-play" my I2C sensors. I originally tried to sew the sensor onto the palm of the glove using the conductive thread, but I never could get it to solder onto the sensor properly, so I ended up eliminating the conductive thread altogether.

Adafruit Feather with Cat-3 Keystone Jack Adafruit Feather with Cat-3 Keystone Jack

Ultimately, I decided to forego the glove completely until I could prove my concept.

Once I had the hardware wired up, it was time to write the sketch for the Feather. The Adafruit Feather that I bought is based on the Arduino 32u4 processor, so I opened up the Arduino IDE and started modifying the sample code for the 9-DOF sensor (and merged in sample code from the OLED display, as well).

I was able to get my custom cerkit.com logo on the display and that made me happy.

cerkit.com Logo on the Adafruit OLED Display Featherwing

Here is the code that displays the output of the 9-DOF sensor to the serial monitor of the Arduino IDE:

#include <Adafruit_SSD1306.h>

/*********************************************************************
  This is an example for our Monochrome OLEDs based on SSD1306 drivers

  Pick one up today in the adafruit shop!
  ------> http://www.adafruit.com/category/63_98

  This example is for a 128x32 size display using I2C to communicate
  3 pins are required to interface (2 I2C and one reset)

  Adafruit invests time and resources providing this open source code,
  please support Adafruit and open-source hardware by purchasing
  products from Adafruit!

  Written by Limor Fried/Ladyada  for Adafruit Industries.
  BSD license, check license.txt for more information
  All text above, and the splash screen must be included in any redistribution
*********************************************************************/

#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_LSM9DS0.h>

using namespace std;

#define OLED_RESET 4
Adafruit_SSD1306 display(OLED_RESET);

#define BUTTON_A 9
#define BUTTON_B 6
#define BUTTON_C 5

#define CHANNEL 1

bool _invertText = false;

/* Assign a unique base ID for this sensor */
Adafruit_LSM9DS0 lsm = Adafruit_LSM9DS0(1000);  // Use I2C, ID #1000  
char _xBuf [10] = { 0 };  
char _yBuf [10] = { 0 };  
char _zBuf [10] = { 0 };  
char _lsmData [128] = { 0 };


/***************************************************************************************************
   Splash screen image generated by LCD Assistant
   http://en.radzio.dxp.pl/bitmap_converter/
   See https://learn.adafruit.com/monochrome-oled-breakouts/arduino-library-and-examples
   for more details
 **************************************************************************************************/

static const unsigned char PROGMEM cerkit_splash [] = {  
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x0F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x7F, 0x3E, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x01, 0x8F, 0x0F, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x02, 0x1F, 0x07, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x04, 0x1F, 0x07, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x08, 0x1F, 0x07, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x10, 0x1F, 0x07, 0xF8, 0x00, 0x00, 0x00, 0x02, 0x00, 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x38, 0x1F, 0x0F, 0xE4, 0x00, 0x00, 0x00, 0x02, 0x00, 0x40, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x3C, 0x0F, 0x1F, 0xE6, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x4E, 0x03, 0x3F, 0x8E, 0x0E, 0x07, 0x02, 0xC2, 0x31, 0xC1, 0xF8, 0x00, 0x07, 0x07, 0x07, 0x60,
  0x47, 0x00, 0xFF, 0x1E, 0x11, 0x08, 0x83, 0x22, 0x40, 0x40, 0x40, 0x00, 0x08, 0x88, 0x84, 0x90,
  0xC3, 0xC0, 0xFC, 0x3F, 0x21, 0x10, 0x42, 0x22, 0x80, 0x40, 0x40, 0x00, 0x10, 0x90, 0x44, 0x90,
  0x81, 0xFE, 0xE0, 0xFF, 0x20, 0x10, 0x42, 0x02, 0x80, 0x40, 0x40, 0x00, 0x10, 0x10, 0x44, 0x90,
  0x80, 0x7F, 0x03, 0xFF, 0x20, 0x1F, 0xC2, 0x03, 0x00, 0x40, 0x40, 0x00, 0x10, 0x10, 0x44, 0x90,
  0x80, 0x07, 0x1F, 0xFF, 0x20, 0x10, 0x02, 0x02, 0x80, 0x40, 0x40, 0x00, 0x10, 0x10, 0x44, 0x90,
  0x80, 0x00, 0xFF, 0xFF, 0x20, 0x10, 0x02, 0x02, 0x40, 0x40, 0x4C, 0x10, 0x10, 0x10, 0x44, 0x90,
  0x80, 0x00, 0xFF, 0xFF, 0x11, 0x08, 0x42, 0x02, 0x20, 0x40, 0x48, 0x38, 0x08, 0x88, 0x84, 0x90,
  0xC0, 0x07, 0x1F, 0xFF, 0x0E, 0x07, 0x82, 0x02, 0x10, 0x40, 0x30, 0x10, 0x07, 0x07, 0x04, 0x90,
  0x40, 0x3F, 0x01, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x41, 0xFE, 0xC0, 0x7E, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x43, 0xE0, 0xFC, 0x3E, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x2F, 0x80, 0xFF, 0x1C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x1E, 0x00, 0xFF, 0x88, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x1C, 0x00, 0xFF, 0xC8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x0C, 0x00, 0xFF, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x02, 0x00, 0xFF, 0xE0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x01, 0x80, 0xFF, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x70, 0xFE, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x0F, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};

#if (SSD1306_LCDHEIGHT != 32)
#error("Height incorrect, please fix Adafruit_SSD1306.h!");
#endif

void setup()  
{
  Serial.begin(9600);
  Serial.println(F("cerkit.com warbly hand controller")); Serial.println("");

  // by default, we'll generate the high voltage from the 3.3v line internally! (neat!)
  display.begin(SSD1306_SWITCHCAPVCC, 0x3C);  // initialize with the I2C addr 0x3C (for the 128x32)
  // init done

  // Show image buffer on the display hardware.
  // Since the buffer is initialized with an Adafruit splashscreen
  // internally, this will display the splashscreen.
  display.display();
  delay(2000);

  display.clearDisplay();
  display.display();

  showCustomSplashScreen();

  pinMode(BUTTON_A, INPUT_PULLUP);
  pinMode(BUTTON_B, INPUT_PULLUP);
  pinMode(BUTTON_C, INPUT_PULLUP);

  /* Initialize the sensor */
  lsm.begin();

  /* Display some basic information on this sensor */
  displaySensorDetails();

  /* Setup the sensor gain and integration time */
  configureSensor();

  Serial.println(F("Found LSM9DS0 9DOF"));
}


void loop() {  
  performSensorSweep();
}

void showCustomSplashScreen()  
{
  // compensate for original image being inverted
  display.invertDisplay(true);
  display.drawBitmap(0, 0, cerkit_splash, 128, 32, WHITE);
  display.display();
  delay(2000);

  // put the display back to normal
  display.invertDisplay(false);

  display.clearDisplay();
  display.display();
}

void updateScreen(char* msg, int x, int y)  
{
  display.setCursor(x, y);
  display.setTextSize(2);
  display.setTextColor(WHITE);
  display.print(msg);
  display.display();
}

void printMessage(char* msg)  
{
  printMessage(msg, 2);
}

void printMessage(char* msg, int textSize)  
{
  display.clearDisplay();
  display.setCursor(0, 0);
  display.setTextSize(textSize);
  if (_invertText)
  {
    display.setTextColor(BLACK, WHITE); // 'inverted' text
  }
  else
  {
    display.setTextColor(WHITE);
  }

  display.print(msg);
  display.display();
}

void performSensorSweep()  
{
  /* Get a new sensor event */
  sensors_event_t accel, mag, gyro, temp;

  lsm.getEvent(&accel, &mag, &gyro, &temp);

  // print out accelerometer data
  Serial.print("Accel X: "); Serial.print(accel.acceleration.x); Serial.print(" ");
  Serial.print("  \tY: "); Serial.print(accel.acceleration.y);       Serial.print(" ");
  Serial.print("  \tZ: "); Serial.print(accel.acceleration.z);     Serial.println("  \tm/s^2");
  Serial.println("**********************\n");

  // print out magnetometer data
  Serial.print("Magn. X: "); Serial.print(mag.magnetic.x); Serial.print(" ");
  Serial.print("  \tY: "); Serial.print(mag.magnetic.y);       Serial.print(" ");
  Serial.print("  \tZ: "); Serial.print(mag.magnetic.z);     Serial.println("  \tgauss");
  Serial.println("**********************\n");

  // print out gyroscopic data
  Serial.print("Gyro  X: "); Serial.print(gyro.gyro.x); Serial.print(" ");
  Serial.print("  \tY: "); Serial.print(gyro.gyro.y);       Serial.print(" ");
  Serial.print("  \tZ: "); Serial.print(gyro.gyro.z);     Serial.println("  \tdps");

  Serial.println("**********************\n");

  delay(250);
}

/**************************************************************************/
/*
    Displays some basic information on this sensor from the unified
    sensor API sensor_t type (see Adafruit_Sensor for more information)
*/
/**************************************************************************/
void displaySensorDetails(void)  
{
  sensor_t accel, mag, gyro, temp;

  lsm.getSensor(&accel, &mag, &gyro, &temp);

  Serial.println(F("------------------------------------"));
  Serial.print  (F("Sensor:       ")); Serial.println(accel.name);
  Serial.print  (F("Driver Ver:   ")); Serial.println(accel.version);
  Serial.print  (F("Unique ID:    ")); Serial.println(accel.sensor_id);
  Serial.print  (F("Max Value:    ")); Serial.print(accel.max_value); Serial.println(F(" m/s^2"));
  Serial.print  (F("Min Value:    ")); Serial.print(accel.min_value); Serial.println(F(" m/s^2"));
  Serial.print  (F("Resolution:   ")); Serial.print(accel.resolution); Serial.println(F(" m/s^2"));
  Serial.println(F("------------------------------------"));
  Serial.println(F(""));

  Serial.println(F("------------------------------------"));
  Serial.print  (F("Sensor:       ")); Serial.println(mag.name);
  Serial.print  (F("Driver Ver:   ")); Serial.println(mag.version);
  Serial.print  (F("Unique ID:    ")); Serial.println(mag.sensor_id);
  Serial.print  (F("Max Value:    ")); Serial.print(mag.max_value); Serial.println(F(" uT"));
  Serial.print  (F("Min Value:    ")); Serial.print(mag.min_value); Serial.println(F(" uT"));
  Serial.print  (F("Resolution:   ")); Serial.print(mag.resolution); Serial.println(F(" uT"));
  Serial.println(F("------------------------------------"));
  Serial.println(F(""));

  Serial.println(F("------------------------------------"));
  Serial.print  (F("Sensor:       ")); Serial.println(gyro.name);
  Serial.print  (F("Driver Ver:   ")); Serial.println(gyro.version);
  Serial.print  (F("Unique ID:    ")); Serial.println(gyro.sensor_id);
  Serial.print  (F("Max Value:    ")); Serial.print(gyro.max_value); Serial.println(F(" rad/s"));
  Serial.print  (F("Min Value:    ")); Serial.print(gyro.min_value); Serial.println(F(" rad/s"));
  Serial.print  (F("Resolution:   ")); Serial.print(gyro.resolution); Serial.println(F(" rad/s"));
  Serial.println(F("------------------------------------"));
  Serial.println(F(""));

  Serial.println(F("------------------------------------"));
  Serial.print  (F("Sensor:       ")); Serial.println(temp.name);
  Serial.print  (F("Driver Ver:   ")); Serial.println(temp.version);
  Serial.print  (F("Unique ID:    ")); Serial.println(temp.sensor_id);
  Serial.print  (F("Max Value:    ")); Serial.print(temp.max_value); Serial.println(F(" C"));
  Serial.print  (F("Min Value:    ")); Serial.print(temp.min_value); Serial.println(F(" C"));
  Serial.print  (F("Resolution:   ")); Serial.print(temp.resolution); Serial.println(F(" C"));
  Serial.println(F("------------------------------------"));
  Serial.println(F(""));

  delay(500);
}

/**************************************************************************/
/*
    Configures the gain and integration time for the TSL2561
*/
/**************************************************************************/
void configureSensor(void)  
{
  // 1.) Set the accelerometer range
  lsm.setupAccel(lsm.LSM9DS0_ACCELRANGE_2G);
  //lsm.setupAccel(lsm.LSM9DS0_ACCELRANGE_4G);
  //lsm.setupAccel(lsm.LSM9DS0_ACCELRANGE_6G);
  //lsm.setupAccel(lsm.LSM9DS0_ACCELRANGE_8G);
  //lsm.setupAccel(lsm.LSM9DS0_ACCELRANGE_16G);

  // 2.) Set the magnetometer sensitivity
  //lsm.setupMag(lsm.LSM9DS0_MAGGAIN_2GAUSS);
  //lsm.setupMag(lsm.LSM9DS0_MAGGAIN_4GAUSS);
  lsm.setupMag(lsm.LSM9DS0_MAGGAIN_8GAUSS);
  //lsm.setupMag(lsm.LSM9DS0_MAGGAIN_12GAUSS);

  // 3.) Setup the gyroscope
  lsm.setupGyro(lsm.LSM9DS0_GYROSCALE_245DPS);
  //lsm.setupGyro(lsm.LSM9DS0_GYROSCALE_500DPS);
  //lsm.setupGyro(lsm.LSM9DS0_GYROSCALE_2000DPS);
}

Here's a screenshot of the serial monitor output:

Serial Monitor Output for the 9-DSO Sensor on the Adafruit Feather

Once I had this data, I could start to interface with MIDI to send note and other data to my computer.

This is where things started to fall apart. I'm not sure what exactly went wrong, but nothing sounded the way I intended. I tried to code a note threshold for a particular range of values of the magnetometer. The idea was that as the sensor got closer to a magnet that was fixed to my desk, it would raise or lower the note being played by my music software. It worked...sort of, but not at the level of detail that I imagined. I looked around for ways to come up with the correct combination of notes to data mapping, but I never really got anything that satisfied me.

After a few hours of working on the code, I gave up and put the project away. As a matter of fact, I'm writing this many months after I stopped working on it. I was so frustrated by my failure to get it working to match my imagination that I didn't bother documenting my efforts.

Update: November 19, 2017 - I decided to complete this project and get it up and running. After examining the code, I realized that I was calling the note on and note off MIDI messages in the wrong way. After a bit of twiddling with my timing, I was able to get it to work (mostly). It still stops sending the messages after a few seconds, but I was able to get it to run long enough to create a short video of the results.

#include <frequencyToNote.h>  
#include <MIDIUSB.h>
#include <pitchToFrequency.h>
#include <pitchToNote.h>

#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_LSM9DS0.h>

// Simple tutorial on how to receive and send MIDI messages.
// Here, when receiving any message on channel 4, the Arduino
// will blink a led and play back a note for 1 second.

/* Assign a unique base ID for this sensor */   
Adafruit_LSM9DS0 lsm = Adafruit_LSM9DS0(1000);  // Use I2C, ID #1000

static const unsigned ledPin = 13;      // LED pin on Arduino Uno

void setup()  
{
    pinMode(ledPin, OUTPUT);

    lsm.begin();

    /* Display some basic information on this sensor */
    displaySensorDetails();

    /* Setup the sensor gain and integration time */
    configureSensor();

    Serial.println(F("Found LSM9DS0 9DOF"));
}

void loop()  
{
    performSensorSweep();
}

void performSensorSweep()  
{
  /* Get a new sensor event */ 
  sensors_event_t accel, mag, gyro, temp;

  lsm.getEvent(&accel, &mag, &gyro, &temp);

  // print out accelerometer data
  Serial.print("Accel X: "); Serial.print(accel.acceleration.x); Serial.print(" ");
  Serial.print("  \tY: "); Serial.print(accel.acceleration.y);       Serial.print(" ");
  Serial.print("  \tZ: "); Serial.print(accel.acceleration.z);     Serial.println("  \tm/s^2");

  // send a MIDI note...
  int zAccelNote = map(gyro.gyro.z, -128, 80, 20, 127);
  int xAccelVelocity = map(gyro.gyro.x, -144, 144, 64, 127);

  // print out magnetometer data
  Serial.print("Magn. X: "); Serial.print(mag.magnetic.x); Serial.print(" ");

  // send a MIDI note...
  int zNote = map(mag.magnetic.z, -3.03, 0.28, 20, 100);
  //int xVelocity = map(mag.magnetic.x, -6.0, 6.0, 64, 127);
  int xVelocity = 127;

  digitalWrite(ledPin, HIGH);
  noteOn(3, zNote, xVelocity);
  yield;
  digitalWrite(ledPin, LOW);

  Serial.print("  \tY: "); Serial.print(mag.magnetic.y);       Serial.print(" ");
  Serial.print("  \tZ: "); Serial.print(mag.magnetic.z);     Serial.println("  \tgauss");

  Serial.println("**********************\n");

// set acceleration
//int accelDelay = map(accel.acceleration.x, 
 delay(5);
}

// First parameter is the event type (0x09 = note on, 0x08 = note off).
// Second parameter is note-on/note-off, combined with the channel.
// Channel can be anything between 0-15. Typically reported to the user as 1-16.
// Third parameter is the note number (48 = middle C).
// Fourth parameter is the velocity (64 = normal, 127 = fastest).

void noteOn(byte channel, byte pitch, byte velocity) {  
  midiEventPacket_t noteOn = {0x09, 0x90 | channel, pitch, velocity};
  MidiUSB.sendMIDI(noteOn);
}

void noteOff(byte channel, byte pitch, byte velocity) {  
  midiEventPacket_t noteOff = {0x08, 0x80 | channel, pitch, velocity};
  MidiUSB.sendMIDI(noteOff);
}

/**************************************************************************/
/*
    Displays some basic information on this sensor from the unified
    sensor API sensor_t type (see Adafruit_Sensor for more information)
*/
/**************************************************************************/
void displaySensorDetails(void)  
{
  sensor_t accel, mag, gyro, temp;

  lsm.getSensor(&accel, &mag, &gyro, &temp);

  Serial.println(F("------------------------------------"));
  Serial.print  (F("Sensor:       ")); Serial.println(accel.name);
  Serial.print  (F("Driver Ver:   ")); Serial.println(accel.version);
  Serial.print  (F("Unique ID:    ")); Serial.println(accel.sensor_id);
  Serial.print  (F("Max Value:    ")); Serial.print(accel.max_value); Serial.println(F(" m/s^2"));
  Serial.print  (F("Min Value:    ")); Serial.print(accel.min_value); Serial.println(F(" m/s^2"));
  Serial.print  (F("Resolution:   ")); Serial.print(accel.resolution); Serial.println(F(" m/s^2"));  
  Serial.println(F("------------------------------------"));
  Serial.println(F(""));

  Serial.println(F("------------------------------------"));
  Serial.print  (F("Sensor:       ")); Serial.println(mag.name);
  Serial.print  (F("Driver Ver:   ")); Serial.println(mag.version);
  Serial.print  (F("Unique ID:    ")); Serial.println(mag.sensor_id);
  Serial.print  (F("Max Value:    ")); Serial.print(mag.max_value); Serial.println(F(" uT"));
  Serial.print  (F("Min Value:    ")); Serial.print(mag.min_value); Serial.println(F(" uT"));
  Serial.print  (F("Resolution:   ")); Serial.print(mag.resolution); Serial.println(F(" uT"));  
  Serial.println(F("------------------------------------"));
  Serial.println(F(""));

  Serial.println(F("------------------------------------"));
  Serial.print  (F("Sensor:       ")); Serial.println(gyro.name);
  Serial.print  (F("Driver Ver:   ")); Serial.println(gyro.version);
  Serial.print  (F("Unique ID:    ")); Serial.println(gyro.sensor_id);
  Serial.print  (F("Max Value:    ")); Serial.print(gyro.max_value); Serial.println(F(" rad/s"));
  Serial.print  (F("Min Value:    ")); Serial.print(gyro.min_value); Serial.println(F(" rad/s"));
  Serial.print  (F("Resolution:   ")); Serial.print(gyro.resolution); Serial.println(F(" rad/s"));  
  Serial.println(F("------------------------------------"));
  Serial.println(F(""));

  Serial.println(F("------------------------------------"));
  Serial.print  (F("Sensor:       ")); Serial.println(temp.name);
  Serial.print  (F("Driver Ver:   ")); Serial.println(temp.version);
  Serial.print  (F("Unique ID:    ")); Serial.println(temp.sensor_id);
  Serial.print  (F("Max Value:    ")); Serial.print(temp.max_value); Serial.println(F(" C"));
  Serial.print  (F("Min Value:    ")); Serial.print(temp.min_value); Serial.println(F(" C"));
  Serial.print  (F("Resolution:   ")); Serial.print(temp.resolution); Serial.println(F(" C"));  
  Serial.println(F("------------------------------------"));
  Serial.println(F(""));

  delay(500);
}

// First parameter is the event type (0x0B = control change).
// Second parameter is the event type, combined with the channel.
// Third parameter is the control number number (0-119).
// Fourth parameter is the control value (0-127).

void controlChange(byte channel, byte control, byte value) {  
  midiEventPacket_t event = {0x0B, 0xB0 | channel, control, value};
  MidiUSB.sendMIDI(event);
}

/**************************************************************************/
/*
    Configures the gain and integration time for the TSL2561
*/
/**************************************************************************/
void configureSensor(void)  
{
  // 1.) Set the accelerometer range
  lsm.setupAccel(lsm.LSM9DS0_ACCELRANGE_2G);
  //lsm.setupAccel(lsm.LSM9DS0_ACCELRANGE_4G);
  //lsm.setupAccel(lsm.LSM9DS0_ACCELRANGE_6G);
  //lsm.setupAccel(lsm.LSM9DS0_ACCELRANGE_8G);
  //lsm.setupAccel(lsm.LSM9DS0_ACCELRANGE_16G);

  // 2.) Set the magnetometer sensitivity
  //lsm.setupMag(lsm.LSM9DS0_MAGGAIN_2GAUSS);
  //lsm.setupMag(lsm.LSM9DS0_MAGGAIN_4GAUSS);
  lsm.setupMag(lsm.LSM9DS0_MAGGAIN_8GAUSS);
  //lsm.setupMag(lsm.LSM9DS0_MAGGAIN_12GAUSS);

  // 3.) Setup the gyroscope
  lsm.setupGyro(lsm.LSM9DS0_GYROSCALE_245DPS);
  //lsm.setupGyro(lsm.LSM9DS0_GYROSCALE_500DPS);
  //lsm.setupGyro(lsm.LSM9DS0_GYROSCALE_2000DPS);
}

Overall, this was a fun project, and I enjoyed getting to hear the sounds it created.